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STATE-OF-THE-ART METHODS FOR CALCULATING 
FLUTTERJ VORTEX-INDUCEDJ AND 

BUFFETING RESPONSE OF BRIDGE STRUCTURES 

I, INTRODUCTION AND OVERVIEW 

It is matter of historical record that, prior to the pivotal Tacoma 

Narrows incident, many suspended-span bridges were destroyed by wind. It 

was only with Tacoma Narrows, however, that a deep general realization of 

the potential aeroelastic nature of these phenomena was firmly inaugurated. 

This general insight was based primarily on the results of tests of bridge 

section models in wind tunnels. Although by the present date perhaps a 

dozen or more full-bridge aeroelastic models have been built and tested, 

the test method of choice for the far larger number remains the section model, 

even including those cases where other model types are also studied. 

The prime advantages of the section model are its relative cheapness 

and simplicity, coupled with the fact that it can be made large enough 

to give rather faithful attention to geometric detail to avoid some of the 

questionable Reynolds number problems of smaller-scale models. 

The original focus of aeroelastic studies on bridge models was the 

flutter problem, since flutter had destroyed the original Tacoma Narrows 

span. Flutter is a self-excited oscillation that sets in at some critical 

cross-wind velocity and does not diminish, but instead increases in sever

ity, at higher velocities. Self-excitation is its key characteristic, 

whereby bridge structural oscillatory deflection induces wind forces that 

enhance such motion. 
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The severity of the example set out at Tacoma Narrows was sufficient 

that today it would be considered a huge oversight in flexible, long-span 

bridge design if wind tunnel aeroelastic studies were not routinely pre

scribed. By the same token, the problem of bridge flutter may be considered 

to be under design control in the present state of the art. This does not 

imply that the problem is routinely dispensed with, but rather thatthemeans 

are at hand, and quite fully understood, to alleviate it, most particularly 

if they are applied in the design stage rather than as a post-construction 

"fix". 

This report will first address itself to the flutter problem, 

outlining the steps necessary to treat it through the study of wind tunnel 

section models plus analysis. 

There remain two wind-induced problems of long-span flexible bridges 

which may be generally classed rather as annoying than as potentially catas

trophic. These are the responses to vortex induction around the deck and to 

buffeting by wind turbulence. Each of those will be treated in this report 

also. 

Vortices are shed behind any bluff body in a cross flow. The general 

regularity of such shedding, accompanied by alternating pressures over the 

body, may excite one of the natural frequenciP.s.of the body. This occurs 

over many bridge decks, particularly those having bluff, solid cross-sections. 

An oscillation may be set up that, while not proceeding at higher wind ve

locities to catastrophic proportions, may still be very objectionable from a 

user or a fatigue standpoint. The suppression of vortex-induced oscillations 

at relatively low wind speeds may in fact be a slightly more troublesome 

problem to alleviate than the more fundamental and dangerous problems of 

2 



flutter. Even bridges that are not flutter-prone may occasionally exhibit 

a susceptibility to vortex-induced excitation. Again, adequate aerodynamic 

treatment in the design stage can be counted on for alleviation. This re

port concerns itself with analytical models which may assist in extrapolating 

model data on vortex response to full scale, for use in predicting prototype 

action. 

Finally, a problem to which all bridge designs remain more or less 

susceptible, regardless of their other aerodynamic treatments, is that of 

buffeting. The wind, being turbulent, attacks the bridge deck from a range 

of angles about the horizontal. In other words, the natural wind contains 

velocity vectors that are not all simultaneously oriented in the mean hori

zontal direction. These impinge on the bridge and give rise to varying 

transient pressure distributions that are random in space and in time. De

pending on the spectral distributions of these velocity vectors, they may selec

tively excite certain modes of vibration in the full bridge. The design problem is 

to ascertain whether such possible excitation will be harmful to the bridge 

over its lifetime, from either a user comfort or fatigue standpoint, and to 

influence those design parameters that counteract buffeting effects. 

Based on certain data taken on the deck section model, reliable 

calculations of expected buffeting response can be made. Such calculations 

aid in establishing important design information such as expected stress 

levels, desirable torsional stiffness values, etc. This report offers tech

niques for making such analytical estimates. 

3 



II, THE BACKGROUND LITERATURE 

Serious analytical and experimental studies relative to the problems 

of bridge aeroelasticity began, of course, in 1940, with Tacoma Narrows. The 

* monumental work of Farquharson [2.1] containing key sections by Karman and 

Dunn (Part III, Ch. VII) went a very long way, not only in diagnosing the 

faults of the original Tacoma design and developing a stable configuration for 

its replacement, but in launching modern practice relative to such problems. 

Excellent early work on bridge deck section models was done by 

Scruton [2.4] and others at the National Physical Laboratories (now National 

Maritime Institute) Teddington, England {see Refs. [2.12], [2.29], [2.63] for 

a rather extensive bibliography). In the same spirit, Geo:~ge Vincent pursued 

section model aerodynamic studies in the 1950 1 s in the wind tunnel which he de

signed and had built (and which now bears his name) at the Fairbank Highway Re

search Station of the U.S. Federal Highway Administration at McLean, Virginia. 

A good deal of testing of section models took place in the 1950 1 s 

and early 1960 1 s, most of which centered on a conception of the model as a 

direct analog of the prototype bridge. A representative set of references 

covering this period may be found in [2.12]. 

2.1 Basic Modeling Technique 

In order to explain the trends in the extensive literature, it is 

worthwhile at this point to discuss the modern viewpoints on model testing. 

* 

Flutter, as an aeroelastic phenomenon, depends strongly upon: 

1. aerodynamics, as ;nfluenced decisively by the 
geometry of the bridge structure; 

2. bridge structural dynam;cs, resulting motions 
of which interact ("aeroelastically"} with 
bridge aerodynamics. 

Numbers in brackets refer to the listing at the end of Sect;on II. 
4 



Thus, the prime objective of bridge model dynamic tests is to establish a 

geometric configuration that will be stable against flutter in the wind. 

Therefore, the first use of models is to establish this confi-

guration. For this, the model must app~oximate a dynami-

cally scaled version of the bridge. (It cannot, however, be hoped 

that more than a first approximation in this sense can be achieved since, 

ultimately, the dynamic characteristics of a section model fall far short of 

those of a full bridge.) A desirable level of approximation is achieved, 

however, first, by establishing simple scales for testing under laminar wind 

flow, as follows: 

l) length scale (;i_L), model (m)-to-prototype (p) : 

AL= Lm/Lp 

2) wind velocity scale (>,_U): 

usually set by available tunnel wind speeds compared to 

natural high wind speeds at the site of the prototype. 

3) Density Scale (>-p) : 

A = 
p 

This must be unity since both the model and the prototype are 

immersed in air of the same density (on the occasion of model 

testing at altitude or in gas of another density " r l and p 
must be adjusted accordingly.) 
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4) Equal reduced velocity condition (maintenance of flow 
geometric similarity under oscillatory motion) 

= 

(N and B are structural natural frequency and typical 
dimension, like bridge deck width, respectively). This 
results in the frequency sealing law: 

Note that if equal gravitational effects (as might occur 
with pendulum action of a suspended span) are required, 
then Froude scaling may apply, according to which: 

= 

Since g =gm= gp (model and prototype are under the same 
gravitational acceleration g ) , then 

or 

and therefore frequency scaling follows the law: 

under Froude scaling. 

Inversely, time scaling follows as 

= 

under Froude sealing; or 
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under general scaling. 

5) Finally. oscilation damp~ng (in terms of log dee 6 and 
'\, 

critical damping ratio c; ; 6 = 2n c;) must 

satisfy 

The model consists typically of a rigid, carefully constructed, 

geometric scale-replica of a chosen abbreviated length of the bridge sus

pended span (see, for example, Fig. 2.1 ). This model is then endowed with 

bending (vertical) and torsional (rotational) freedoms by mounting it 

elastically upon springs. The springs are usually outside the air flow. 

The calibration and spacing of the springs is such that, following the 

modeling laws, the lowest bending and torsional frequencies of the full 

bridge are reproduced to scale in the section model. 

r1odel damping should duplicate prototype damping, which is 

initially unknown. It is then usually conservative to take model damping 

as low as reasonably possible. 

In this first configuration, then, the model is p~ov~io1ULU.y 

assumed to represent the action of a typical section of the prototype, prin

cipally for purposes of working on its aerodynamic shape. Several alternate 

geometric configurations are typically prepared and wind-tunnel tested for 

direct observation of the model's aerodynamic stability over a range of 

wind velocities. That which is most stable or stable over the widest range 

is tentatively elected as the prototype configuration. 

7 
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2.2 The Extraction of Aerodynamic Data from Models 

The more modern viewpoint on models in the wind tunnel is that 

they are in reality analog computers capable of yielding basic aerodynamic 

force information. Such information is useful in making a variety of pre

dictive and diagnostic calculations for study of the prototype bridge 

res pons es to wind. 

Starting in the mid-1960's (see Refs. [2.11], [2.14]), this 

more analytic use of models began to be exploited. Refs. [2.16] and [2.29] 

describe in detail how models may be studied to extract information on their 

so-called 6lu:tteA deJUva.uve/2. 

Without making explicit use here of analysis at this point, the 

experimental data that models can furnish for ultimate analysis purposes, 

can be described: 

1. Static: Aerodynamic lift, drag, and moment coefficients. 

2. Dynamic: Flutter derivatives for the oscillating bridge 
deck. 

3. Dynamic: Indicial lift and moment functions for the bridge 
deck. 

4. Aerodynamic admittance of the bridge deck in turbulent flow. 

The concerns of much of the literature in the recent two decades 

have centered on ana.iyti~ studies of bridge response, with a necessary minimum 

of basic input data expected to stem from section model studies. Certain 

papers emphasize the techniques of extraction of the data from models, while 

other papers emphasize the development of theories for bridge response in 

which model experimental data play central roles. 
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2.3 Literature on the Flutter Problem 

This literature is the oldest and most voluminous. Good summaries 

are available in Refs. [Z.12], [2.29J and [2.63]. It is not worthwhile 

to emphasize, at this late date, the long list of studies in which the sec

tion model is viewed and employed primarily in the "first" way, i.e. as an 

approximate direct analog of the prototype. Such studies have become classic 

as well as indispensable and are made in a straightforward manner in perhaps 

a dozen laboratories around the world. One might comment that the "modern" 

literature begins approximately where these studies cease, i.e. it starts 

with a concern for the section models as analog computers of aerodynamic 

forces and admittances rather than as analog computers of the entire gamut 

of possible prototype bridge responses under wind. 

The modern era of interpretation of section models can perhaps be 

said to have bee~ inaugurated approximately in the mid-1960's. At a con

ference on suspension bridges held in 1966 in Lisbon, at the inauguration 

of the new Tagus River bridge, a paper by Ukeguchi, Sakata, and Nishitani [2.11] 

appeared that revealed the basic method developed in Japan for experimentally 

measuring the flutter derivatives (aerodyamic coefficients accompanying bridge 

deck oscillation) of bridge decks and for using these results in analytical 

bridge flutter stability studies. 

This paper described the method, now widely accepted in Japan, of 

using a machine to drive a rigid bridge deck section model through certain 

prescribed oscillation amplitudes, at a range of frequencies in the wind 

tunnel. A description was given of the method of obtaining the aerodynamic 

forces engendered on the model while it was thus oscillated; a key item was 

the simultaneous oscillation of a "dummy" model outside the air stream, in 

10 



order to develop equal and opposite inertial forces which were then 

subtracted from the measured total force to obtain the net forces of aero

dynamic origin. This very effective method generally follows out the 

techniques of a very similar method initiated in the 1950's at MIT by 

Halfman [2. 2] who measured airfoil fl utter derivatives by it. 

Late in 1967, the so-called "free-oscillation" technique was 

initiated in the United States at the George Vincent Wind Tunnel of the 

FHWA by Scanlan and Sabzevari and later more fully exploited by Scanlan 

and Tomko. This method is fully described in Refs. [2.14], [2.16] and 

L 2.29 ]. Essentially, the method allows the free oscillation of the bridge 

deck model in a cross wind and infers the appropriate flutter derivatives 

from identification techniques applied to the study of the model oscillatory 

response at various values of the reduced velocity parameter U/NB. The 

main advantage of the technique is its relative simplicity and its lack of 

requirements for extensive experimental hardware. 

A third technique for obtaining bridge model flutter derivatives 

was developed in France by Loiseau and Sztchenyi [2.25], who drove a bridge 

model through prescribed oscillation amplitudes and measured the oscillatory 

pressure changes at a series of taps on the surface of the model. The vary

ing pressures were then integrated spacewise to obtain net motion-dependent 

aerodynamic forces on the model. This very effective method requires a 

reasonable provision of calibrated, highly sensitive pressure measuring and 

recording equipment. Its use is limited, in certain circumstances, by the 

presence of special geometric forms in the bridge deck section, such as 

fences, parapets, or barriers, in which pressure taps may not be conveniently 

located for testing purposes. 

11 



All three of the above methods provide flutter derivatives which 

cannot, to date, be obtained other than by experiment, given the aerodynamic 

complexity of typical bridge deck cross-sections. It remains necessary, 

after such experiments, to continue dynamic analysis of bridge performance 

based on their results. Refs. [2.12], [2.29], and [2.54] detail thelilannerin 

which bridge deck flutter analyses may be carried out. The present report 

also highlights key aspects of these methodologies. 

The principal advantage of the modern analytic interpretation of 

bridge section model experiments is that, after a minimum of aerodynamic 

experimentation, the flutter problem is transferred over to a calculational 

form that permits a wide variation of parameters, including full-prototype 

simulation under a variety of assumed conditions not necessarily present 

in the laboratory. Also, since the experimentally derived data reflect only 

the geometric effects of the bridge deck shape, and not its inertial or 

elastic dynamics, the section model tests themselves can be made under sim

plified conditions not necessarily reflecting complete prototype conditions. 

The model is then construed merely as a geometric representative of the 

prototype, not as complete in all dynamic details. Thus protot_ype damping, 

frequencies, etc, need not be accurately scaled in the test (although it 

is sound practice not to depart too strongly from expected ranges for them). 

The data obtained are dimensionless functions of reduced cross-wind velocity 

U/NB and as such are directly transferable to the prototype. 

2.4 Literature on the Buffeting Problem 

The problems of flutter and buffeting of suspended-span bridges 

bear certain generic resemblances to the aircraft problems of the sam~ names. 
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Though bridge problems are distinguished by flows around generally bluff 

bodies, while aircraft problems center on streamlined ones, the broad 

outlines of the analytic approaches to both categories of problem are very 

similar. The specific points on which they differ will be emphasized later. 

In 1952, Liepmann [2.3] published a paper on the response of 

aircraft to atmospheric gusts. In 1961 and 1962, Davenport [2.6], [2.7] 

and [2.8] published what are probably the first analytic papers to appear 

on the effect of wind turbulence on slender stru~tures and suspension 

bridges. In 1966, he presented another, more extended paper [2.10], on 

the same subject at the Lisbon suspension bridge conference. In 1971, 

Simiu, in a doctoral dissertation [2.17] at Princeton University, described 

methods for calculating the response of a bridge to buffeting. 

In 1975, Holmes [2.22], presented a theoretical calculation of 

the response of a cable-stayed bridge to turbulent wind. 

In 1977, Scanlan and Gade [2.43] offered a method that included 

experimentally measured, aerodynamic ("flutter") derivatives. 

In 1978, Scanlan presented two comprehensive papers [2.55] on the 

experimentally-derived section model flutter and static force derivatives. 

This work suggested analytical arguments for the observed fact that flutter 

of a full bridge in turbulent wind does not necessarily exhibit a sharp 

critical onset at a specific velocity (as does a flutter model in laminar 

flow). This was explained by the effect of the aerodynamic coupling, 

through the flutter derivatives, in distributing the wind energy throughout 

several bridge modes simultaneously, instead of permitting a concentration 

of energy in just the lowest unstable mode. 
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Further contributions to analytical bridge buffeting predictions 

were made in 1978 by Irwin and Schuyler [2.51], [2.52], who dealt with 

both experimental and analytic predictions of the wind response of the 

Lions' Gate bridge. 

Holmes [2.49] has developed an analytical prediction of the 

response of the West Gate bridge to turbulent wind. 

Studies in Japan, notably [2.23 - 2.24], [2.26-2.28], [2.33-2.35] 

and [2.45], have dealt with the prediction of buffeting response. 

The present report will select and present a single basic approach 

to the analytical buffeting problem in a later section. 

2.5 Literature on the Vortex-Shedding Problem 

The general vortex-shedding problem for bluff bodies has a very 

extensive literature, some of which is cited in ~.54](Chs. 4,6,8). A very 

good general compilation on the vortex-shedding problem for individual bridge 

structural members,has been made by Chi et al [2.30], [2.36], for the U.S. 

Federal Highway Administration. For applications specifically to bridge 

decks, few references, aside from [2.54] (Ch. 6) and [2.29], may be cited. 

The present report will offer, at a later point, an analytical 

methodology based on deck section model experiments. Not all the references 

compiled and listed in this report are specifically cited, only the principal 

highlights being mentioned in the above review. The longer reference list 

is retained at the end of this section, however, for its broad value to the 

interested reader. 
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III. ANALYTICS OF THE FLUTTER PROBLEM 

Refs.[3.l],[3.2];treat this problem in detail. The aim of the 

present presentation will be to guide the designer to those minimum essen

tial steps necessary for design. Unusual or special considerations will 

be omitted. 

3.1 The 2-D Problem 

Consider the bridge deck section as pictured in Fig. 3.1. Let 

h represent the vertical deflection of the local e.g. of the section and 

a the rotation coordinate (angle) about that e.g •• Let m represent the 

mass per unit span and I, the mass moment of inertial about the e.g., 

per unit span. Then (neglecting lateral motion as unimportant to flutter) 

the two sectional equations of motion are 

(3.la) 

(3. lb) • 2 
I [ a + 2 r; w a + w a] = M a a a a 

where i;h, r;a are the damping ratios-to-critical and wh , wa are the 

natural circular frequencies, respectively in h- and a- motions, and 

Lh, Ma are the aerodynamic force and moment per unit span acting on the 

section. 

The above equations (3.la and b) are written for a bridge deck 

section that is horizontally balanced about its e.g. If this is not the 

case, but the deck is unbalanced instead, i.e., is unsyrrmetrical about 

* Numbers in brackets refer to the listing at the end of Section III. 
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its e.g.), the corresponding equations become 

(3.2a) 

(3.2b) 
-- a .. · • ·2 

I[a + - 2- h + 2 1;; w a + w a] = M 
a a a a 

rg 

where ma is the mass unbalance of the section about its e.g., and rg 

is its radius of gyration about the same point. 

The aerodynamic force and moment at the e.g. are of the linear, 

self-excited type and are basically given by 

(3.3a) 

(3.3b) 

where the coefficients Hi, Ai (i=l ,2,3) are aerodynamic in origin and 

must be determined experimentally for the particular shape of deck in 

question. 

The coefficients H1 , pertaining to h, and A2 and A3 , 
. 

pertaining to a and a , are the direct coefficients, and the others 

(H2, H3, and A1) are the coupling coefficients. In many instances, the 

direct coefficients prove to be the more important. 

By their nature, the coefficients Hi and A; are dimensional, 

and a nondimensional form for them is needed so that their values, deter

mined in scaled model experiments, can be transferred for use in full 
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scale. 

(3.3c) 

(3.3d) 

where 

This is done [3.3] by writing eqs. (3.3) in the form 

• • 
1 2 * h K H* ~a + 2 * 

Lh = 2 p U ( 2 B )[ K H1 U + K H3 a] 2 U 

• • 
M 1 

p u2(2B2)[K A; & + KA* Ba+ 2 * = 2 K A3 a] 
a 2 U 

p = 0.002378 slugs/ft3 

p = air density { 
p = l. 228 kg/m3 = 1. 228 x l o-3 gm/cm 3 

U = cross wind velocity 

8w K = u 
B = deck width 

w = circular frequency of flutter oscillation 

* * and the nondimensional aerodynamic coefficients H; and A1 bear the 

following relation to H; and Ai : 

* m Hl * 
I A1 

Hl = Al = 2 3 p 13 w p B w 

* m H2 * I A2 
(3.4) H2 = A2 = 3 4 

p B w p B w 

* m H3 * 
1 A3 

H3 = A3 = 
83 2 84 2 

p w p w 

* Some examples of the values experimentally obtained for H. and 
l. 

* A; are illustrated in Figs. 3.2 and 3.3 for decks whose sectional form is 

sketched on the figures. The plots are given as functions of N~ = 2; • 
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* * It should be noted that the products KH1 , KAl • etc., play 
. 

the roles of flutter derivatives. Consider the term H1 h , for example. 

This has the dimension of a force per unit span length. If written in 

classic aerodynamic lift force form, it would have the appearance 

l 2 * h 
2 p U ( 2 B ) KH l IT = 

• 
l 2 "-' 

= 2 pU (2B)CL 

where - i, 
a - IT is an "effective" angle of attack. 

Thus, 

l 2 dCL h 
2 PU (2B) da IT 

where dCL/da is the derivative of al ift coefficient CL ~,ith respect to 

angle of attack. 

It is emphasized again that the values of all the aerodynamic 

derivatives must be experimentally obtained, and they evolve as functions 

of reduced velocity U/NB. Of particular interest is the manner in 

* which the coefficient A2 evolves with U/NB. This coefficient is pro-

portional to torsional aerodynamic damping, and it plays a central role in 

many cases of bridge flutter susceptibility, since it often changes sign 

(from stable to unstable) with increasing U/NB in certain cases. 

3.2 The 3-D Problem 

3.2.l Case of the Straight Horizontal Deck 

To proceed from analysis of the spanwise deck section to the full 

span, let h(x,t), a(x,t) represent h and a values as function of 
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the spanwise position x and time t. It will be assumed in this case, 

that bending and torsion modes of the bridge are independent (uncoupled) 

from each other. Let h(x) be the modal deflection form in the lowest bend

ing mode and a(x) be the modal deflection form in the lowest torsional mode. 

Then, 

h(x,t) = h(x) p(t) 

a( x , t ) = a ( x ) q ( t ) 

where p and q are now the generalized coordinates. The equations of 

motion (3.l) for the balanced deck then convert immediately to 

where 

(3.6a) t11 I m(x) 
2 = h ( x) dx 

span 

(3.6b) Il I I (x) 
2 = a (x)dx 

span 

(3.6c) c,, = I h
2

(x)dx 
span 

(3.6d) c12 = I h(x) a(x)dx 
span 

(3.6e) C22 t,, 
2 = a (x)dx 
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are generalized mass, moment of inertia, and modal factors, respectively. 

Generalizations of Eqs. (3.2) for the unbalanced deck are direct but will be 

omitted here. Note that f represents an integral over the entire side-
span 

and main-spans of the bridge (i.e. over whatever constitutes the mode in 

question). 

3.3 Case of an Arched or Curved Deck 

When the deck of the bridge is curved in either the vertical or the 

horizontal plane, coupling of bending, torsional and lateral deflections 

occurs in all natural modes; in other words, each mode consists, at any given 

spanwise station, of vertical, torsional, and lateral deflection 

components of the local e.g. of the deck section. 

Including then a lateral or sway deflection r of the deck e.g. 

at spanwise section x, the vertical, torsional, and lateral deflections 

in the first two natural modes may be expressed as 

(3.7a) 

(3.7b) 

(3.7c) 

where 

a(x,t) = a1(x) , 1(t) + a2(x) , 2(t) 

d~, t ) = r
1

(x) ,
1
(t) + r

2
(x) ,

2
(t) 

r. (x) , are the dimensionless modal form 

components associated with the ; th mode, and ,i(t) (i=l,2) are the 

associated dimensionless generalized coordinates. 
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The total kinetic energy of the system is the spanwise integrated 

sum of displacement and rotational energies: 

l j "2 •2 •2 (3.8) T = 2 {m(x)[h (x,t) + r (x,t)J + I(x) a (x,t)} dx 
span 

where m(x) and l(x) are the mass and mass moment of inertia per unit 

length of the deck and associated cables per unit span, Under the generalized 

orthogonality condition 

(3.9) j {m(x)[hi(x)hj(x) + 

span 

The kinetic and potential energies of the system may be written: 

(3.10) 

( 3. 11 ) 

where, for i=l or 2: 

(3.12) Ii = I {m(x)[h~(x) + r~(x)]B2 + I(x)af(x)}dx 
span 1 1 

31 

( i ;! j) 



I; being the generalized inertia in the ; th mode and wi being its 

natural circular frequency. 

Under the conditions described, and with the inclusion of assigned 

damping ratios s; to the respective modes, the equations of motion become 

( 3. 13a) 

( 3. 13b) 

the Q; being the generalized forces. Employing the basic section aero

dynamic (self-excited) force expressions (3.3), with h and a as in (3.7), 

the generalized forces, at the circular flutter frequency w , can be found 

to be 

(3. 14a) 

* * 
+ 

K A1 
(C i + Ch t2) + 

K A2 
(C { + C l ) u h1a1 l 2al u a1 a1 l a1 c.2 2 

K2 A* 
+ 3 

(CCX Cl. t, + ca a E.:2)} u l 1 1 2 

32 



where 

(3.15) 

in which 

C a.b. 
1 J 

B 

= J a.b. dx 
span 1 J 8 

(a,b) ranqe over (h,a.}, and (i,j) ranqe over (1,2). 

There are 10 such coefficients of interest here. 

The generalized forces may further be reduced to the form 

(3.16a) 

(3.16b) 

where 

(3.17a) 

(3. 17b) 
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(3.17c) 

(3.17d) 

* * (3.18a) Fll (K) = H3 ( K)Ch + A3(K)C 
l al a1a1 

* * (3.18b) F12 (K) = H/K)Ch a + A3(K)C 
l 2 ala2 

* * (3.18c) F 21 ( K) = H3(K)Ch + A3(K)C 
2al a1a2 

* * (3.18d) F 22 ( K) = H3(K)Ch + A3(K)C 
2C(2 C(2C(2 

It is seen from the form of the generalized forces (3.23) that the 

equations of motion (3.20) are coupled together by the aerodynamic forces, 

the degree of coupling depending on both the aerodynamic flutter derivatives 

and the modal cross-coupling coefficients (3.15). 

3.4 Solutions of the Flutter Equations 

3.4.l Simplest Case: Pure Torsional Flutter 

(or any coupled flutter in which torsion alone becomes unstable) 

* If the torsional coefficient A2 reverses sign with increasing 

NUB (see, for example, Fig. 3.4), flutter instability is indicated. This is, 

in fact, a very common case in practice. To find the wind velocity at 

flutter ("critical flutter velocity"), proceed as follows. 
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In Eq. (3.5b), consider only the damping terms (proportional to q). 
Mechanical damping is just balanced out by aerodynamic damping if: 

(3.19) 

Assuming (as is usually the case), that flutter occurs practically at the 

same frequency as the first mode, let 

* yields the critical value of A2 as 

(3.20) 

~ w = w 
a 

• Then the condition ( 3 .19) 

* (In effect, this states that the critical flutter value of A2 is equal to 

the "scaled" value of mechanical damping s in the a-mode by a factor equal 
a 

to twice the ratio of the generalized mechanical inertia to the generalized 

aerodynamic inertia.) 

The corresponding value (U/NB)c, is the critical one, and the 

critical wind velocity is 

(3.2) 

Note: If A; never changes sign, the critical flutter 
velocity may be high, but in any case, it depends upon 

solution of the two-degree-of-freedom problem (in both 
p and q). This is treated below. 
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3.4.2 The Two-Degree-of-Freedom Case for Straight Decks 

This case is more rare and likely to produce flutter only if the 

lowest bending and torsion frequencies of the bridge are "near" each other. 

Further, it will not be the important case for a design unless the plot of 

* the coefficient A2 does not reverse sign. 

When the conditions for two-degree flutter are satisfied (as, 

occasionally, for very streamlined bridges), the flutter that can occur is 

said to be of the "classical" airfoil, or "coupled" type. This is a flutter 

in which interaction of aerodynamic stiffness terms, rather than damping 

terms, is the principal mechanism. 

The solution proceeds by assuming a sinusoidal response jointly in 

p and q and setting the determinant of the two-equation system (3.5) equal 

to zero. Details are given in Ref. [3.~. Letting 

(3.22) X = w/wh 

where w is the circular flutter frequency, the following two simultaneous 

equations, with X as unknown, are obtained: 

(3.23a) 

(3.23b) 

where the coefficients 

of K: 

(3.24a) 

a. 
l 

are the following constants or functions 
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{3.24b) 

(3.24c) 

(3.24d) 

(3.24e) 

(3.25a) 

(3.25b) 

(3.25c) 

(3.25d) 

84 * 82 84 2 * * * * 
= l ~ C A + f:.E._ ~ (C A H - C C A H ) a4 + 1

1 
22 3 M1 M1 12 l 2 11 22 Z l 

2 r; 
Cl. 

w 
+ 2c _Q. 

'aw h 

The solution method is as follows. A value of K is chosen and all 

* * the coefficients Hi and Ai are evaluated for that K. and b. 
1 

in (3.12) and (3.13) are evaluated. These constants are then used in Eqs. 

(3.11). Eqs. (3.11) are then solved for the values of X corresponding 

to the K chosen. The above process is repeated for a series of values of K. 

Plots of the solutions X of (3.23a) and (3.23b) are made vs. the K 

values used. Where the plot of solutions X for (3.23a) crosses the plot 

of solutions X from (3.23b), the critical flutter condition Xe exists. 

The corresponding K value is 
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i.e., the critical flutter velocity is 

(3.26) 

Example. on PUite. T0Jr1.,,,{_onaf. Flufte.Jr.. 

* Consider the case where coefficient A2 is the only important 

torsional aerodynamic coefficient, as given, for example, by Fig. 3.2, Bridge 2. 

Let the bridge deck mass moment of inertia per unit span be 

I = 857,000 lb. sec2( 3.9 x 105 kg sec2) 

with B = 100 ft ( 30.5 meters). If the deck is uniform, 11 = c
22 

I 

* and, according to eq. (3.20), the critical value of A2 is given by 

For a value of mechanical damping of 

density 

~ = 0.01 and air at sea level 

= 2.857000•(0.0l) 
(0.002378)•1004 = 0.072 (nondimensional) 

According to Fig. 3.2 this corresponds to a critical U/NB value of 7.1 

which, for a natural torsional frequency of N = 0.2 Hz, corresponds to a 

flutter velocity of Uc = 142 ft/sec = 96.8 mph (= 156 km/hr). 
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Example. OJ) Two-Ve.gJte.e. FlutieJL 

The mechanical damping ~r and ~h will both be taken as 0.01; the 

aerodynamic coefficients will be taken from Fig. 3.3 and are as listed below 

(for bridge section #2)o The deck width B=lO0 ft (30.5m), while the span L= 

4,000 ft. (1220 m). The vertical and torsional modes will be assumed to be 

ha1f sine waves, therefore c11 =c12 =c22 =L/2=2,000 ft. (610m). The con

stant sectional moment of inertia per unit span wi 11 be taken as I= 857,000 1 b. 

sec2 (3.9 x 105 kg sec2) while the mass of the deck per unit span will be 

M = 711.8 lb sec2/ft2 (3481 kg sec2/m2). These· lead to: 

B4 p84 pB4 
0.277 u+)c,, = <-r-) c,2 = <-1->c22 = 

l l l 

B2 pB2 p82 
0.0334 'T)c,, = (M) c,2 = (M)C22 = 

1 l l 

It will be assumed that wa = 2 wh and that wh = 2TT(.l Hz). 

* * * * * * U/NB Al A2 A3 Hl H2 H3 

2 0 0 0 -0.67 0 0 

4 0 -0.03 0 -1. 50 0 -0.05 

6 0.75 -0.05 0.50 -2.05 0.7 -1. 25 

8 0.70 -0. l 0 1.00 -3. 25 2.25 - 3. 35 

10 0.68 -0.14 1.46 -4.25 4.25 -4.00 

12 0.70 -0.16 l .69 -s. 50 8.90 - 5.00 
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CUBIC EQUATION 

bo = 2( .Ol) (2) 2 + 2( .01 )2 
= 0. 12 

* * bl = -0.1336 H1 - 0.~77 A2 

* b2 = -0.06 - 0.00554 A3 

* * * * * * b3 = 0.0277 A2 + 0.0334 H1 + .00925 [H1A3 - A1H3] 

U/NB = 12 (K = .523) 

bo = . 12 

bl = (-.1336)(-5.50) - 0.277(-.16) = • 7791 

b2 = -.06 - 0.00554(1.69) = -.06936 

b3 = (.277)(-.16) + [.0334)(-.5.5) 

+ .00925 [(-5.5)(1.69) + 5(.70)] 

= -.2816 

(-.2816)X3 - (.06936)X 2 
+ (.779l)X + .12 = 0 

x3 
+ (.2462)X2 - 2.7667X - .4261 = 0 

X = l.62 

(Negative r~ts neglected) 
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U/NB = 10 (k = .628) 

b· = • 12 a 

bl = (-.1336)(-4.25) - (.277)(-.14} = 0.6066 

b2 = -.06 -.00554(1.46) = -.06809 

b3 = (.277)(-.14) + .0334 (-4.25) 

+ .00925 [(-4.25)(1.46) + 4(.68)] 

= -.2130 

(-.2130)X 3 - (.06809)X2 + (.6066)X + .12 = 0 

x3 + .3197 x2 - 2.848 x - .5634 = o 

X = 1.63 

U/NB = 8 (K = .785) 

ba 
;; • 12 

bl = (-.1336)(-3.25} - .277(-.10) = 0.4619 

b2 = -.06 - (.00554)(1.00) = -.06554 

b3 = (.277)(-.10) + (.0334)(-3.25) 

+ .00925 [(-3.25) + 3.35(.70)] 

= -.1446 

(-.1446)X3 - (.06554}X2 + ~4619 X + .12 = 0 

x3 + (.4533)X2 - (3.l94)X -.8299 = 0 

X = l. 71 
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U/NB = 6 (K = 1.05) 

U/NB = 

b0 = .12 

b1 = (-.1336)(-2005) - (.277)(-.05) = .2877 

b2 = -.06 - (.00554)(0.50) = -.06277 

b3 = (.277)(-.05) + (.0334)(-2.05) 

+ .00925 [(-2.05)(.50) - (.75)(-1.25)] 

= -0.0831 

(-.083l)X3 - (.06277)X2 + {.2877)X + .12 = 0 

x3 + (o7554)X2 - 3.462 X - 1.444 = 0 

X = 1.73 

4 (K = 1.57) 

bo = .12 

bl = (-.1336)(-1.50) - .277(-.03) = .2087 

b2 = -.06 - .0054(0} = -.06 

b3 = -.00831 + .0334(-1.5) = -.0584 

(-.0584)X3 - (.06)X2 + (.2087)X + .12 = 0 

x3 + (l.027)X2 - (3.574)X - 2.055 = 0 

X = 1. 73 
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U/NB = 2 (K = 3.14) 

bo = • 12 

bl = (-.1336)(-0.67) - (.277)(0) = .08951 

b2 = -.06 

b = (.0334)(-.67) = -.02238 3 

(-.02238)X3 - (.06)X2 + (.0895l)X + .12 = 0 

x3 + 2.681X2 - 4.00X - 5.362 = 0 

X = 1.63 

Quartic Equation 

U/NB = 

ao = (2)2 = 4 

al = 0 

* a2 = -5.0008 - .277 A3 

* * a3 = .00134 H1 + .00554 A2 

* * * * * a4 = l + .277 A3 + .00953 [A1 H2 - A2 H1] 

12 (K = .523) 

ao = 4 

al = 0 

a2 = -5.0008 - ( 2. 77) ( l • 69) = -5.469 

a3 = (.00134)(-5.50) + (.00554)(-.16) = -.00826 (neglig.) 

a4 = l + (.277)(1.69) + .00953 [(.70)(8.9) - 5,50(.16)] 

= l . 519 
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U/NB = 

(l.519)X4 - 5.469X2 + 4 = 0 

x2 = 5.469 ± ✓{5.469] 2 - 4(4Hl.519} 

2(1.519} 

x2 = 2.579, 1.021 

X = l .61 1.01 , 

10 (K = .628) 

ao = 4 

al = 0 

a2 = -5.0008 - (.277)(1.46) = -5.405 

a3 = negligible 

a4 l + (.277)(1.46) + .00953 [(.68)(4.25) - (4.25)(.14)] 

= 1.426 

l.426 x4 - 5.405 x2 + 4 = o 

x2 = 5.405 ±✓{5.405) 2 - 4{4}(1.426) 
2(1.426) 

x2 = 2.782 t 1.008 

X = 1.67 , 1.00 
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U/NB = 

U/NB = 

8 (K = .785) 

ao = 4 

al = 0 

a2 = -5.0008 - (.277)(1.00) = -50278 

a3 = negligible 

a4 = 1 + (0277)(1.00) + .00953 [(.70)(2.25} - (.10)(3025)] 

= 1. 289 

1.2s9 x4 - 5.278 x2 + 4 = o 

x2 = 5.278 ± ✓(5.278} 2 - 4(4)(1.289} 
2(1.289) 

x2 = 3.091 1.004 , 

X = l. 76 1.00 ,, 

6 (K = 1.05) 

ao = 4 

a, = 0 

a2 = -5.0008 - .277(.50) = -5.139 

a3 = negligible 

a4 = l.+ (.277)(.50) + .00953 [(.75)(.70) - 2.05 (.05}] 

= l.143 
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(1.143) x4 - 5.139 x2 + 4 = o 

x2 = 5.139 ± ✓ {5.139} 2 - 4{4}~1.43} 
2(1.143) 

x2 = 3.495 , 1.001 

X = l.87 1.00 , 

U/NB = 4 (K = 1.57) 

ao = 4 

al = 0 

a2 = -5.0008 

a3 = negligible 

a4 = 1.000 

x2 = 5.0008 ± ✓(5.0008)2 - 16 
2 

x2 = 4.001 .99973 , 

X = 2.000 1.000 , 

U/NB = 2.0 (K = 3.14) 

ao = 4 

a, = 0 

a2 = -5.0008 

a4 = 1.00 

X = 2.000 1.000 , 
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VALUES OF X w = wh 

U/NB K Cubic Eg. Quartic Eg. 

2 3.14 1.66 LOO 2.00 

4 1.57 1. 73 1.00 2.00 

6 1.05 1. 73 1.00 l.87 

8 .785 1.71 LOO 1. 76 

10 .628 1.63 l. 00 l .67 

12 .523 1.62 LOl l. 61 

Cubic equation intersects quartic equation at 

X = 1.62 K = .53 ( U/NB = 11 • 7) 

Therefore, 

= (100 ft) [2n (.l)] 1.62 
Uc 0.53 

Uc = 190.3 ft/sec = 129.7 mph 
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IV, A VORTEX SHEDDING MODEL IN THE BRIDGE CONTEXT 

Introduction 

Many comp1ex analytical models of the vortex-shedding 
* phenomenon have been pub1ished in the literature. Ref. [4.1] cites a 

considerable number of these. All of the models are empirical in nature 

and depend upon experiment for the evaluation of the several constants 

that occur in them. The number of constants is greater if the details of 

physica1 response sought to be represented are fine-grained, or very 

accurate. 

The phenomenon of vortex shedding, and the 11 lock-in 11 (or 11 lock-on 11 ) 

phenomenon associated with it in the case of flexible structures are well 

known in their general characteristics. However, a few salient features 

will be reviewed here as a setting for the ideas to be presented below. 

When wind blows across an elongated, bluff object, the wake of the 

object often shows a coherent set of alternating vortices discharged down

wind. These vortices are initiated, in detail, by the fine physical con

stitution of the fluid flow as it is variously sheared by the effects of 

body cross-secti-onal shape. The mechanism, very broadly speaking, can be 

described as an interaction between the.inertial and viscous forces of the 

fluid as they are influenced by body geometry. Hence the flow regimes in 

which vortex shedding is manifest are a function of Reynolds number. 

For a wide range of Reynolds number of interest to engineering, 

however, the rhythm of alternate vortex shedding is governed by the simple 

Strauhal relation 

* Numbers in brackets refer to listing at the end of Section IV. 
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where ns is the frequency of complete cycles of vortex shedding, U 

is the cross-fl ow velocity of the fluid, A is the across-fl ow projected 

area of the body per unit of its span, and S is the Strouhal number, 

nearly a constant, dependent mainly on body geometric shape. For a cir-

"' cular cross-section, for example, S 0.2. The Strauhal number for 

various bluff bodies typically ranges between 0.1 and 0.3. For a given 

new bridge deck cross-section, it must, however, be determined from experi

ment. Table 4.1 [4.2] lists some Strouhal numbers for specified directions 

of fluid flow for some typical structural forms. 

If the bluff body is elastically supported, the alternating fluid 

pressures on it that accompany the vortex shedding phenomenon will cause it 

to deflect alternately, either across the flow, or in twist. This deflection, 

for engineering structures, may be considered to be unimportant except in 

those cases when the Strauhal vortex shedding rhythm approaches closely to 

a natural frequency of the structure. In such cases, the structure may 

"resonate" and so deflect appreciably, and in so doing, its motion also af

fects the local boundary conditions influencing the fluid action. What is 

observed overall in such cases, is the following aeroelastic phenomenon. 

The vortex-shedding frequency is directly proportional to wind 

velocity; when this velocity is such as to elicit a natural structural fre

quency by the proper vortex-shedding rhythm, the resulting structural motion 

causes the vortex shedding phenomenon to "lock on" to the rhythm established 

by the structure. This condition prevails over a range of wind velocities 

exceeding the initial lock-on value. Appreciably higher wind velocity is 

then required before a vortex rhythm sufficiently "out of tune" with the 

structural rhythm occurs so as to break up the "lock-in" phenomenon and 

lower the strength of the response. 
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Fig. 4.1 depicts the trend of the lock-on phenomenon. 

It has in fact, been demonstrated by certain careful experiments 

[4.3], that the spectrum of across-wind force acting on the bluff body always 

contains at least the two important components -- one at the Strauhal-governed 

frequency, and the other at the structure-governed frequency. The relative 

magnitudes of these components vary as the velocity and structural motion 

vary. However, when the two frequencies are close together, lock-on of vor

tex shedding has its greatest effect, giving rise to greatest structural 

oscillation amplitude. 

Researchers have sought empirical mathematical models that reflect 

the main phenomenological points qualitatively described above. Such models 

have, in general, had no difficulty in representing gross structural behavior-

which is reasonably modeled as that of a simple linear, elastic oscillator; 

but numerous difficulties have been encountered with the range of fluid oscil

lator properties and overall performance characteristics. The most coITTllon 

tendency then in the analytical models to be found in the literature is to 

provide for a quasi-independent "fluid oscillator" that is coupled in some 

manner to the structural oscillator. 

Since all models described to date in the literature are heavily 

empirical, the particular model selected for a given purpose can scarcely 

support claims to a deep underlying physical insight; rather it represents, 

at its most favorable, the simplest device intended to accomplish a given 

end, namely, the forecasting of the sought-after character of a new event 

based on observations of similar past events. 

In bridge wind engineering, the vortex shedding phenomenon presents 

itself in the following situations. A long-span, flexible bridge may, at 

a relatively low cross-wind velocity, exhibit oscillations of limited 
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amplitude that can be fatiguing to the structure or annoying to its users. 

When a section model of the same bridge, with geometrically similar deck, is 

mounted elastically in a wind tunnel, the same vortex shedding and lock-on 

phenomena are exhibited at some scaled velocity. 

The problem confronting the wind engineer then simply is to predict, 

from observation of the scaled section model, the maxinum amplitudes to be 

expected in the prototype. It will be noted that,in this circumstance, not 

all aspects of the complex phenomenon of vortex shedding need be reproduced 

by an analytical model. All that is required is that, given observation of 

a scaled section model at locked-in "resonance", the corresponding "worst 

case" of the prototype be forecast for design purposes. 

This circumstance implies only that whatever analytical model is used 

be capable of transcribing the observed wind tunnel model behavior at "re

sonance" over to prototype behavior, and that prior and post states of 

excitation need not be of concern. 

What is in fact observed in the wind tunnel is that, at lock-in wind 

speed, a model released in the cross-wind will oscillate in a self-excited 

manner, with growing amplitude, until a maximum limiting amplitude is achieved 

and thereafter maintained as a steady-state oscillation. This limiting am

plitude is a function of the mechanical damping of the model and, of course, 

is also highly dependent upon the model geometric shape. 

In the context then of these circumstances, a simple,self-limiting, 

nonlinear oscillator of the Van der Pol type will be suggested as a fore

casting model in the present report. Means will be described for determining 

its two aerodynamic parameters, and an extrapolation from bridge section model 

to prototype full-span bridge will be outlined. 
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4.1 Analytical Model of the Deck Section (Vertical Motion) 

The analytics of response to vortex shedding will first be discussed 

with attention to the more pronounced response direction--vertical. In 

Section 4.6, some remarks on torsional response will be made. 

Consider a deck section model, of deck width B, projected (windward} 

area per unit span A, vertical deflection coordinate h, and mass per 

unit span m. The following nonlinear analytical model of its vertical 

vortex-induced motion is proposed: 

(4. n 

where ~h = damping ratio in h-motion 

wh = natural circular frequency in h-motion 

p = air density 

* Ho = aerodynamic damping coefficient 

2 nonlinear aerodynamic response coefficient e: = 

u = steady cross-wind velocity. 

The model proposed is nonlinear, but, based on some laboratory 

observation, the response will nonetheless be assumed to take, approximately, 

the same form as that of a linear oscillator: 

(4.2) h = h
0 

cos wt 

where present interest will be focussed only on the case 

(4.3) w :,, wh 
and 

(4.4) wA 
7f = 2rr s 

55 



where S is the Strauhal number governing vortex shedding far the deck 

cross-section. 

(4. 5) 

(4.6) 

The vertical velocity of deck motion is 

• h = - wh sin wt 
0 

The total damping force per unit span is then 

This will vary in time, according to {4.2), as h varies. 

The average damping energy per cycle (energy lost, plus energy gained), 

will be zero if conditions are such that a steady oscillation is maintained. 

This is calculated by the integral 

(4. 7) 

where 

(4.8) 

But 

(4.9) 

(4.1 O) 

I \d h dt 

0 

wT = 2,r . 
Thus ( 4 • 7 ) i s equivalent to 

* [2 m f,;hwh - p UB H0 ] 

21r/w 
r 

T 
( 

j 
0 

= 0 

p UB H: £ 2 
·2 h dt + 

82 

J (- w h0 sin wt) 2 dt = ,r w h~ 
0 

r2ir/w 

T 

I h2h2 dt = 0 

0 

J (h0 cos wt)2 (- w h0 _sin wtJ2 dt = ; wh~ , 

0 
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whence (4.8), with use of (4.3 and 4.4), leads to the following expression 

for h : 
0 

(4.11) 

This expresses the oscillation amplitude as a function of mechanical 

* parameters and the two aerodynamic parameters s and H
0

, which must be 

determined from experiment. 

* It will be noted that the dimensionless term, R sh/H
0 

with R 

defined as 

(4.12) R = 4TTmS 

p AB 

combines the physical characteristics of the system: ratio of structure to 

air masses; ratio of mechanical to aerodynamic damping; and Strouhal number 

characteristic of structure geometry. It should also be remarked that the 

case E-+0 (no nonlinear damping term), does in fact, correspond to a 

* "critical instability" case of zero damping, when 2m shwh = p UB H
0

• How-

ever, this case is here ruled out physically by observation of only finite

amplitude vortex-induced oscillations in laboratory experiments. [See, 

however, the differing case of torsional nlu:tteJL, Section III]. 

4.2 Evaluation of Constants in the Analytical Model 

* Eq. 4.11 contains two unknown constants, E and H
0

, that must be 

evaluated by experiment. As stated earlier, the mechanical damping influences 
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the response amplitude. Hence a pair of response experiments, each with 

* a different mechanical damping, suffices to establish values of £ and H
0 

for this model. Let (h01 , ~l) and (h02 , i',;h2) be the pairs of 

amplitude and corresponding mechanical damping ratios used in two successive 

deck model "resonance" experiments at the lock-in Strouha l frequency. Then, 

from (4.11) and (4.12): 

(4.13) 

and from (4.11), 

(4.14) 

where the value of h
0 

used is either h
01 

or h
02 

, with i',;h corres

* ponding, and H
0 

comes from (4.13). 

4.3 Analytical Model of the Full Bridge 

Since the phenomenon of vortex lock-in "selects" a particular mode 

for "resonance", this condition will be modeled; that is, it will be assumed 

that a Van der Pol type oscillator response at the natural frequency of a 

given mode is taking place, excited by aerodynamic forces with wind at 

appropriate velocity. In this model, complete coherence of all aerodynamic 

forces along the bridge span will be assumed. This assumption is conserva

tive, as discussed in Ref. [4.1], but at lock-in, the coherence of 
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aerodynamic effects along the span is much greater than in its absence. It 

is expected that the model can therefore, with proper experimental input, 

furnish a preliminary conservative criterion for use in design. Adjustment 

for spanwise loss of coherence will be considered at a later point. 

Eqn. 4.1 above holds for any spanwise deck section. Letting x be 

the spanwise deck coordinate, the vertical motion h at x can be expressed 

as 

(4.15) h(x,t) = ¢(x) ~(t) B 

where ¢(x) is the spanwise shape of the mode involved, ~(t) is its 

generalized coordinate, both nondimensional; the factor B is included for 

dimensional compatibility with that of deflection h. 

The definition (4.15) may be inserted into (4.1), the result multi

plied by ¢(x), and integrated over the span length L of the deck. This 

yields 

(4.16) 

where 

(4.17) M = f m 
¢2 dx (generalized mass) 

(4.18) 
rl ¢2 dx 4>2 = 

L L 

(4.19) 4>4 = f .4 t 
The criterion that the net energy loss per cycle is zero may now be 

applied, i.e., for wT=21r: 

59 



(4.20) 

which, for an assumed approximate response form of 

yields the criterion 

( 4. 21 ) 

This yields, for the response amplitude s
0 

of the generalized 

coordinate: 

(4.22) 

where, as noted earlier, S is the Strauhal number for the section and A 

is its projected (frontal) cross-wind area per unit span; the aerodynamic 

* parameters £ and H
0 

are as determined from experiment in the preceding 

section. 

The spanwise distribution of maximum displacement is then given, 

from (4.15), as: 

(4.23) 
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4.4 Example 

Consider a bridge span L =600 ft (183 m) with a running weight per 

foot of span of 4,500 lb. (6709 kg/m). Assume a Strauhal number of S = O. 15 

at a frequency of n = 0.5 Hz, with a corresponding bridge vertical mode that 

is a half sine wave over the span. Assume a deck width B = 30 ft (9.15 m) 

and a frontal area per unit span of A= 5 ft. (1.52 m). 

Assume that a l/30-scale section model, 5 ft (1.52 m) long, of this 

bridge has been tested at vortex-shedding lock-in with the following results: 

Damping Ratio 1; Amplitude h
0 

0.005 

0.035 

0.25 inch (0.64 cm) 
0.125 inch (0.32 cm) 

From (4.12) (either for model or prototype, assuming the model 

correctly scaled): 

From ( 4. 13): 

R = 
4n m S 

p AB 
= 

4500 4n•32':2•0.15 

0.002378•5•30 
= 738.5 

H: = 738.5[0.005-4(0.035)] = 33 _233 
l - 4 

From (4.14) (using model data) 

s2 = 4 x12
2 

[l 0.005 = 
(0.25)2 - 738.5 33.233] 8192 

so that 

£ = 90.51 
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For } sine waves,· 4>2 =} and 4>4 = ~. Then, from (4.22), for 

the assumed value z;;h = 0.01; 

~ 2 [ 0.5 
~o = 90.51 0.375 

¼ 
738.5( o, 5 ) 0•01-1

2 
= 0.0225 

0.375 33.233"' 

From (4.23). the maximum deflection amplitude h(x) (at center span, x = L/2) 

is then 

h(x) = 30 x 0.0225 = 0.675 ft. (0.206 m) 

The double amplitude (total excursion) will be 1.35 ft. (0.411 m). Note that the 

prototype, full bridge maximum amplitude does not scale simply as the scale 

factor (30) times the observed single amplitude(~} in.)of the section 

model. The ave.Jtage. full bridge amplitude is £x0.675 = 0.43 ft.(0.131 m). In 
1T 

the present example to this point, 100% correlation of spanwise effects has 

been assumed. 

4.5 Correction for Loss of Spanwise Coherence 

Spanwise coherence of force effects falls off rapidly in turbulent 

flow conditions, (cf. [4.5] and Section V), but the phenomenon of lock-on 

acts as a controller and coordinator of such effects, lessening considerably 

the rate of aerodynamic force fall-off with distance along the span from a 

given reference point. Not a large qu1ntity of data are available to 
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Correlation of Vortex Shedding from Circular Cylinder at Lock-in 
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document this point, but Fig. 4.2, drawn from Refs. [4.1], [4.4], [4.5], 

presents some information on the effect of vortex lock-on spanwise cor

relation in the case of a circular cylinder oscillated at various 

amplitudes n = h/A. 

The phenomenon of the spanwise coherence of lock-on vortex induced 

forces requires further research, particularly experimental. It is clear, 

however, from Fig. 4.2 that some loss of coherence must be accounted for, 

both for the reason of natural turbulent loss at constant oscillation 

amplitude and the reason of decreasing deflection of the mode away from 

its highest point. 

As a simple qualitative approach to these two effects, it will first 

be assumed here that the only portion of the deck that is effective in 

producing lock-on forces is the central half near the peak of the mode. 

Under these conditions, the driving vortex forces in the example cited above 

should be modified by integrating them only from L/4 to 3
4L instead of 

completely across the span, 0 to L. 

and 

Thus 

With this modification, ¢2 and ¢4 are changed to: 

I3L/4 
¢m = 2 L/4 

rl/4 
q,m = 4 

L/4 

~o is calculated from 

'o I~~ = 
e:: ~m 

4 

· 2 TIX dx = 0.40915 sin T T 

sin4 i dx = 0.34665 L L 

the modified formula 

•2'j R--m.,.. 
4>4 HO 
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This yields 

2 
90. 51 

1/2 

fg.40915 0.5 X 0.01 J 
r.34665 - 738 •5 0.34665 X 33.23j 

= 0.02049 

which yields a maximum single amplitude of 

h
0 

= 30x0.02049 = 00615 ft. (0.188m) 

It will be observed that the relatively strong assumption -- that only the 

central half of the mode participates in the locked-on vortex driving -- does 

not result in an impressive reduction of the response amplitude, reducing 

it by only about 9%. 

Using this same approach with an even stronger assumption, namely 

that only the central third of the span contributes to the vortex driving 

force, results in the values 

2 L/3 

q,m = t/3 sin2 TIX dx = o. 30450 2 L L 

q,m = 
('13 sin4 TIX dx = 0.29730 4 L T 

L/3 

with the result for ~o 
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= 2 lg.30450 0.5 X 0.01 ]
112 

~90.,....:;.;;__5~1 L.29730 - 738•5 0.29730 x 33.23J 

= 0.01782 

with the consequent value for h
0 

h
0 

= 30 x 0.01782 = 0.535 ft. (0.164m) 

which represents about a 20% reduction in amplitude from the case of assumed 

complete span correlation of vortex forces. 

It may be tentatively concluded that calculations based on complete 

spanwise correlation of vortex effects constitute a conservative upper 

bound to the expected prototype vortex-induced deflections. 

The entire area of vortex-induced oscillation is still in need of 

further research, particularly at the experimental level. The methodology 

presently offered can, however, serve to bound expected prototype responses 

when wind tunnel model data are available as a sound basis for calculation. 

Overall, the loss of spanwise coherence among aerodynamic forces in 

the case of vortex lock-in is not expected to be as strong as that which 

occurs under random turbulence. The present correction factors are, of 

course, purely elJ]pirical and are based on the small amount of evidence pre

sently available from circular cylinders. The coherence question is clearly 

in need of further research of an experimental nature, pointed particularly 

at the bluff-body problem presented by typical bridge deck fonns. 
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4.6 Remarks on Torsional Response 

The equation of sectional motion in the torsional case is 

(4.24) 

where the notation is as in the flutter case, with the additions: 

(4.25) 

where 

(4.26) 

and 

( 4. 27) 

(4.28) 

* A0 = aerodynamic damping coefficient 

e2 
= nonlinear aerodynamic response coefficient. 

The motion at "resonance" may be assumed as approximately of the form 

'\, 

w = w 
Cl 

wA = 2rr S 
u 

The analogous result to (4.11) for amplitude a.0 becomes 

where the dimensionless ratio Q is defined as 

(4.29) 

The defining equations for A~ and e2 are then 

67 



(4.30) 

(4.31) 

for experimentally observed amplitudes a01 , a02 associated with mechanical 

damping values /;;al, ;a2 , respectively. 

Defining now the torsional response in the first mode ~(x) to be 

(4.32) a(x,t) = w(x) n(t) 

where ~(t) is a generalized coordinate responding as 

(4.33) n = n0 cos wt 

leads to the following result for a . 
0 • 

(4.34) 

where 
L 

(4.35) ~2 = J /(x) t 
0 

L 

(4.36) ~4 = 

J 
w4(x) dx 

L 
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(4.37) 
J

L . 

I0 = I(x) ~2(x) dx (generalized moment of inertia) 

0 

The distributed maximum torsional displacement is then 

(4.38) 

The problem is treated in all respects as analogous to the vertical 

response problem. Interest in either problem depends, of course, upon 

direct evidence of vortex excitation witnessed on a wind tunnel model of the 

bridge deck section in question. 
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V, PARAMETERS AFFECTING LONG-SPAN BRIDGE BUFFETING SUSCEPTIBILITY 

Introduction 

Since 1960 there have appeared a number of publications (see Refs. [5.l]

[5.22], at the end of this section) dealing with both theory and test relative 

to the buffeting of suspended-span bridges by natural turbulent wind. The pre

sent section returns to Ref. [5.18] and reexamines the theory relative to the 

buffeting, first of single torsional modes, and second, of single vertical 

modes. 

Torsional modes are, in one sense, more interesting than vertical ones 

because of the not infrequent occurrence of effectively negative aerodynamic 

damping associated with these modes, especially in older bridges where this 

tendency was not specifically avoided by design characteristics initially. 

Such tendencies are associated with a prominent variety of bridge flutter. 

The theory of Ref. [5.18] culminates in a pair of formulas for maximum 

mean-square buffeting deflections beyond the mean steady deflections, as dis

tributed along the bridge span. These formulas are first reexamined, some 

additional effects are included in them, and a representative parameter study 

is then made. In particular, the role of each parameter is emphasized, to

gether with the trend of the dependence of buffeting deflections upon it. 

After an examination of theoretical implications in each case: torsion 

and bending, a set of six successive hypothetical modes is postulated for the 

main span of a long bridge. Using arbitrary but representative parameters, 

the average response of each of the modes is calculated in turn. The study 

permits an evaluation of trends. No intermodal coupling, aerodynamic or 

otherwise, is considered in the present study. While this is possibly 
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important in certain few cases, it is not considered important enough to 

require inclusion in all routine calculations of buffeting response. 

The study will be of interest to designers and retrofitters of older 

bridges as well 1 as to those interested in the interpretation of wind tunnel 

model results on long-span bridges. 

5.1 Theory for Torsion 

Let a be the torsional degree of freedom of the bridge deck, with 

a(x,t) denoting a value of a varying in time at spanwise section x of a 

long-span bridge, such as a suspension bridge. If I is the mass moment of 

inertia of the bridge deck and its support cables per unit span about the 

local e.g. of the deck, then the section x twists according to the equation 

(cf. [5.18]: 

( 5. l ) 

where 

[.. • 2 :i l -2 2 I a+ 2l; w a+ w aJ = -2 pU (2B) a a a 

x [ K A* .6_ + K A* B;_ + K2 A ] + M ( t) 1- 2- 2a ax, u u 

l; = mechanical damping ratio in torsion a 

w = a 
p = 

0 = 

B = 

K = 

* A.= 
1 

natural circular frequency in torsion 

air density 

mean wind velocity normal to the span 

deck width 

Bw = - "reduced frequency" of torsional motion 
u 

(i=l,2,3) = bridge deck self-excited or "fluttern 
coefficient 

* (all Ai are functions of _Q_ = 27T ) 
nB K 
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h = vertical motion of bridge e.g. 

M (x,t) = a 
aerodynamic buffeting moment per unit span 
on section x. 

If the r th single spanwise torsional mode a.r(x) is provisionally 

considered to be responding alone, or independently, let its response be 

designated by 

(5.2) 

where nr(t) is the associated generalized coordinate. Eq. 5.1 then general

izes, for this mode of the full bridge of span L, to 

(5.3) 

* * where self-excited aerodynamic terms in A1 and A3 have been dropped on the 

basis that their contribution is small or negligible (some experimental justi

fication for this exists [5.17]), and 

rl 
(5.4) Ir L 

2 (the rth . generalized inertia) = I a.r(x) dx 

(5.5) Gr t 2 (the th modal factor) = ar(x) dx/L r 
0 

(5.6) M (t) = t M (x,t) a (x) dx (generalized aerodynamic moment) a,r a r 
0 
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Defining a net damping ratio Yr as 

(5. 7) 
4 -

Yr = l; - pB LA* (-u-)G 
r 2Ir 2 nr B r 

* 0 * 0 where A2(nrB) is the value of A evaluated at nB for n=n r , the 

torsional frequency of mode r in Hz, Eq. (5.3) becomes 

L 

(5.8) = I M (x,t) a (x) dx • a r 
0 

The buffeting moment per unit span is 

(5.9) + C' w(x, t) J 
M -u 

- 2 1 I 
= p UB [ CM u ( x, t) + 2 CM w ( x, t)] 

where CM is the moment coefficient of the bridge section at the equilibrium 
I dC 

position under the steady wind (normally near a= 0 ), and Ci,,= daM is 

for the same position; the gust velocity components are u = u(x,t) (hori

zontal) and w = w(x,t) (vertical) at point x of the span. 

Let Su(n) and Sw(n) be respectively the single-point wind-gust 

spectra of u and w. These spectra may be assumed uncorrelated, so that 

their cross-correlations are negligible, i.e. Suw "'Swu "'0. The corres

ponding point-to-point lateral complex cross-spectra, namely Su(xA,x8,n) 

between spanwise points x = x and A 
x = x8 , may be 
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assumed to have negligible imaginary parts (reflecting the near-homogeneity 

of the atmospheric turbulence) but to exhibit coherence that falls off 

exponentially according to the factor [5.2]. 

where, conservatively {inasmuch as the factor 7 is used): 

(5.10) C = 7nL 
u 

Under the above assumptions and conditions, the cross power spectral 

density of the applied moment between xA and x8 is 

Hence, following (5.2) and (5.8), the power spectral density of a (x) r 

is given by 

(5.12) 

where 
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(5.13) 

by 

(5.15) 

The double integral over the span in (5~12) may be approximated [5.18], 

The mean square deflection ar(x) about equilibrium is then given by 

o!(x) = r Sa(x,n)dn 

0 

IA(n)l 2s(n) and 
u This entails the integration of products like 

2 
IA(n) I Sw(n) • If S(n) is either one of the u or w spectra, the 

integration yields, to a very good approximation [5.21]: 

co 
0Q 

(5.16) 

I 
I A ( n) 12 S ( n) dn S(nr) I dn · 

= 
(2rrnr)4 o n 2 2 n 2 

[1 - (-·) ] + [2y -] 
0 "r r nr 

00 

+ l 
J S(n) dn 

(2 nr) 4 
0 
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The first of these two parts may be termed the 11 resonant11 contribution, and 

the second, the "background" contribution. The integral in the first has 

the value 

{5.17) r 
0 

dn ,rn 
= r 

4yr 

Next, to obtain the value of the integral over a particular wind power 

spectral density, the latter quantity must be explicitly prescribed. The 

following are accepted forms [5.21], for su(n) and Sw(n): 

(5.18) 200 f 

(1 + 50f) 513 

(5.19) n Sw(n) 3.36f 
2 = 

(l + lOfS/J u* 

where 

(5.20) f = nz 
D 

z being the height of the bridge, and u* is a friction velocity, the value 
-of which depends on U and the type of terrain over which the wind approaches 

the bridge. In fact, 0, u* and z are related [5.21] by 

(5.21) 0 = 2.5 u* 1n z;z0 

where z0 is a fetch surface roughness length (see Table 5.1 for values of 

of z0 ) • 
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From {5.18) and (5.19), there are obtained the following approximate 

results for the background contributions: 

(5.22) 

(5.23) 

00 

r 
2 j Su(n) dn = 6 u. 

0 

00 

I Sw(n) dn 2 
= 1. 70 u* 

0 

[Note: A value of 1.75 u~ was used in 
calculations made in Section 5.3] 

The effective intensity of horizontal turbulence implied by (5.18) is 10.4¼; 

that for vertical turbulence implied by {5.19) is 5.6%. 

Table 5.1 

SURFACE ROUGHNESS LENGTH 

Type of Surface ·Range of zo (meters) 

Sand 0.0001 to 0.001 
Sea Surface 0.000003 (calm) to 0.004 (gale) 
Snow Surface 0.001 to 0.006 
Mowed Grass 0.001 to 0.01 
Low grass, priarie 0.01 to 0.04 
Fallow field 0.02 to 0.03 
High grass 0.04 to 0.10 
Palmetto 0.10 to 0.30 
Pine forest, about 50 ft. tall, 

medium density 0.90 to 1.00 
Suburbs, outskirts 0.20 to 0.40 
Suburbs, centers 0.35 to 0.45 
Large city centers 0.60 to 0.80 
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Hence 

or 

2 a 
a 

is approximated, from {5.12) and (5.15), by 

21rn B 
where K = _r and 

r U 

2 CM12 (2nn )S (n} 
+ 6 u*J + _ [ r w r 

4 8 yr 

2 
+ l. 70 u* ] • 

Most long-span bridges have constant section decks over the span; in 

and {5.24) may be rewritten as 

(5.25) 
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5.2 Discussion of Factors Affecting the Variance in Torsion 

1. 

2. 

Dimensionless modal fonn squared. No quantitative 

effect. except variation along the span. Note that its arbitrary 

magnitude is cancelled by a corresponding effect in the subsequent 
-1 

factor Gr • 

-4 (_i_)4 
Kr o: n B 

r 
Fourth power of reduced velocity. 

3. [ pBI4]2 o:: (L)2 • -
Ps 

where ps = structural density. 

4. 

5. 

6. 

7. 

See Eq. (5.5). Gr remains approximately constant with 

increasing sinuosity of the mode. 

2(C-l) 

c2 

--2 u • 

-u 
0::-

n L • 
r 

A reduced velocity based on span (rather than width). 

According to meteorological theory (Eq. (5.21)): 

-2 2 2 
U o:: u* tn z 

Yr is the net damping ratio, result of combining mechanical 

and aerodynamic contributions (see Eq. (5.7)), the latter possibly 

of negative sign. Thus, y +O r can signifiy the danger of flutter 

instability. According to the shape of the curve for the coeffi

* cient A2 (Figs. 3.2, 3.3), negative aerodynamic damping contributions 

that may cause yr+ 0 are most likely to occur at high values of 
u , i.e. at high mean wind velocities U or at low frequencies 

nr, or possibly in bridges with narrow decks (B smal 1). 
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8. The first factor c~ is the moment 

coefficient of the deck section at (or near) zero angle 

of attack. The second is the "resonant" spectral term: 

C'2 
9. ~ (2nnr)Sw(nr) • The first factor is proper-

l O. 

tional to the square of the rate of change of the moment 

coefficient of the deck section with change in twist. 

The second is, as in 8. above, a "resonant" spectral 

term: 

-
2nnr Sw(nr) o: u; (n \)2/3 

r 

These are "background" terms in the 

spectral contributions. These terms, while not com

pletely negligible, contribute much less than do the 

resonant terms. (See later comments on numerical 

calculations) 

If all of the above observations are combined together~ the 

"background" terms being provisionally ignored, it is observed from (5.25) 

that 

(5.26) 
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where c2 represents either cM2 or c;/ • Taking the square root, 
Mo 

one may compact this further to 

(5.27) er a. 
cc 2.833 

nr 

2.833 
0 p CM 

0 

9..n z) 

whence the following facts may be concluded. The standard deviation of 

bridge torsional buffeting response, era., is proportional to: 

l. Mean wind velocity as: □2 • 833 • 

2. Air density p. 

3. The moment coefficient CM 
of the deck section (and/or the slope_ c,~ thereof). 

The standarc deviation of torsional buffeting response 

also inversely proportional to: 

cr is a. 

l. Modal frequency nr as: n/· 833 • The exponent 11 2.833 11 

combines all the effects of structural parameters, lateral 
coherence of turbulence, and characteristic turbulence 
falloff at high frequencies. 

2. The square of deck width: s2 , 

3. The structural density p5 • 

4. The square root of the span: Ir. (Longer spans have 
less coherent turbulence effects overall. 

5. The shape of the mode, as measured by 
l GYz 
r • 
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6. Thesquarerootofthenetdamping Yr· ByEqn. (5.7), 

Yr represents the difference between structural and 
aerodynamic damping. Aerodynamic damping generally becomes 
negative (for those bridges with such an aerodynamic pre
disposition), only for relatively high values of 0/nrB, 
i.e. for high mean wind velocities, low natural frequencies, 
or narrow decks. 

7. The height z of the deck above the earth's surface, in 
the form z113 £n z. This represents the general falloff 
of turbulence intensity with altitude. 

Most of the above observations are in accord with common intuition: 

buffeting is more pronounced at higher wind speeds; the shape of the section 

that cuts down wind-induced twisting moment, or does not increase that moment 

sharply with twist, is desirable aginst buffeting; the lower frequencies and 

modes give the highest buffeting response amplitude; high torsional stiffness 

is therefore desirable; a wider and heavier deck tends to be more stable; 

greater length of span reduces the chance of coherent turbulence effects 

(thus some quite vulnerable long-span bridges are defended against 

coherent buffeting by their great span); greater bridge height, while expos

ing the deck to higher mean wind velocities, tends to encounter somewhat 

lesser turbulence effects. 
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5.3 Examples in Torsion 

A number of examples, based on one hypothetical bridge, will be 

presented below. Instead of choosing the actual parameters of specific 

bridges as illustrations of the results of the theory, the following 

approach will be taken. 

A set of 6 torsional modes, sinusoidal in character across the 

main span, will be considered. Attention will be focused on the main span 

only. The lowest will be a half sine wave, and each higher mode will be 

assumed to possess one additional half sine wave. Arbitrary but reasonable 

frequencies n = 0.1 Hz, 0.2 Hz, ••• ,0.6 Hz will be assigned respectively, 

to the modes described. The response expected in these modes under naturally 

* gusty winds with mean velocities of 30, 60 and 90 mph at bridge height will 

be calculated. The combined aerodynamic and structural damping ratio Yr in 

torsion will be calculated from equation (5.7), assuming that the mechanical 

damping ratio is r,;r = 0.01; the necessary characteristics of the aerodynamic 

* coefficient A2 will be taken approximately as illustrated by Fig. 3.2, 

Bridge 2,(cf [5.18]). 

The deck width wi 11 be taken as 8 = 100 ft. ( 30. 5 m) and the bridge 

height as 200 ft. (61 m) with span L = 4000 ft. (1220 m). The friction velocity 

u* will be calculated from the formula (5.21): 
-u -

u* = 200 
2•5 .e.n0.0164 

= U/23.52 

for an assumed roughness length 

an open sea wind fetch. 

* 1 mph= 0.447 m/sec. 

z = O .0164 ft. (5 x 10-3 m) corresponding to 
0 
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The values of the deck section moment coefficient and its derivative 

1ill be taken as CM= -1, CM= 3.67, respectively. The value of sectional 

moment of inertia per unit span will be taken as I= 857,000 lb. sec2 
4 

(3.9 x 105 kg. sec2), leading to (£1l-) 2 = 0.077. Some auxiliary basic data 

are given in Tables 5.2 to 5.4, below. 

Table 5.5 summarizes the results for the three mean wind velocities 

calculated, i.e. 30, 60, and 90 mph. The columns given represent o; (in 

rad2), cr {in radians), and edge deflection 50 a (in feet) at the highest 
(l (l 

point of the mode (based on a 1 deck-width of 50 ft.} Note that the high 

point of the mode occurs at different points of the span according to the 

particular mode shape. For example, it occurs at midspan in the first mode, 

the two quarter-span points in the second mode, etc. 

Based on an assumption that the bridge random response will be 

normally distributed, maximum expected excursions may be taken as from 

3.5 o<l to 4.0 0 • Results for 3.5 0 are presented in Table 5 •. 6 
a 0. 

edge deflections. 

TABLE 5.2 

as 

Data for D = 30 mph = 44 ft/ser!; u* = 1.275 mph= 1.87 ft/sec (0.57 m/sec) 

No. of ½ * G . nr(Hz) C 0/nrB A2 Yr f s SW sine waves r u 

l 0.5 0.1 63.64 4.40 -0.04 0.0155 0.4545 16.2 14.5 

2 0.5 0.2 127 .27 2.20 -0.06 0.0183 0.9090 5.3 5.6 

3 0.5 0.3 190. 91 1.47 -0.04 0.0155 1.3636 2.7 3.0 

4 0.5 0.4 254.54 1.10 -0.03 0.0142 1.8182 l. 7 1.9 

5 0.5 0.5 318. 18 0.88 -0.02 0.0128 2.2727 1.2 1.3 

"6 0.5 0.6 381.82 0.73 -0.015 0.0121 2. 7273 0.9 1.0 

* 13.4 m/sec. 
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TABLE 5.3 

- * u* = 2.551 mph= 3. 741 ft/sec (l.4 m/s) Data for U = 60 mph = 88 ft/sec ; 

* 
Mode Gr nr{Hz) C U/n B A2 Yr f Su SW r 

l 0.5 0.1 31.82 8.80 0.15 Neg. 0.2273 96.2 57.9 

2 0.5 0.2 63.64 4.40 -0.04 0.0155 0.4545 32.5 29.0 

3 0.5 0.3 95.45 2.93 -0.07 0.0197 0.6818 16.9 17 .o 

4 0.5 0.4 127.27 2.20 -0.06 0.0183 0.9090 10.6 11.2 

5 0.5 0.5 159. 10 1. 76 -0.05 0.0169 1. l 364 7.4 8.0 

6 0.5 0.6 190.90 1.47 -0.04 0.0155 l .3636 5.5 6.0 

* 26.8 m/s 

TABLE 5.4 

Data for U = 90 mph= 132 ft/sec*; u* - 3.826 mph - 5.611 ft/sedl.71 m/s) 

0/nrB * 
Mode G "r C A2 Yr f Su SW r 

l 0.5 0. l 21.21 13.20 0.26 Neg. 0. 1515 265.5 112.0 

2 0.5 0.2 42.42 6.60 0.08 Neg. 0.3030 92.4 67.7 

3 0.5 0.3 63.64 4.40 -0.03 0.0142 0.4545 48.7 43.5 

4 0.5 0.4 84.85 3.30 -0.07 0.0197 0.6060 30.7 30.0 

5 0.5 0.5 l 06.06 2.64 -0.07 0.0197 0.7576 21.4 21.4 

6 0.5 0.6 127.27 2.20 -0.06 0.0183 0.9090 15.9 16.8 

* 40.2 m/s 
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Mode 

l 

2 

3 

4 

5 

6 

30 mph (13.4 m/sec) 

2 
(J 0 

TABLE 5.5 
SUMMARY OF RESULTS 

60 mph (26.8 m/s) 
Max.edge 
defl .( ft) 

02 50 0 a 50 a 

90 mph (40.2 m/s) 

a. a (l a a a. (Ja. cra 50 oa. 

2.20 X lQ-4 0.015 0.741 ur stable unstab l 1 

4.64 X 10-4 0.002 0.108 2.2x 10-4 0.0148 0. 741 unstabl 1 

5.82xl0-l 7 .63 x 1 o-4 0.0'38 2. l X 10-6 0.0046 0.229 2.4 X 10 -4 0.0155 0.775 

1.29 X 10-7 3.59 X 10-4 0.018 L6 x ,o-6 0.0021 0.107 3.8xl0 -5 0.0062 0.308 

4.08 x l 0-B 2.02xlo-4 0.010 l.5x 10 -6 
0.0012 0.061 l .2 X 10 -5 0.0034 0.170 

l .60 x l 0-S 1.27 X 10-4 0.006 5.7x 10-7 0.0008 0.038 4.5xl0 -6 0.0021 0.106 

Summart of Table 5.5 in S.I. Units 

13.4 m/s 26.8 m/s 40.2 m/s 

Mode Max. Edge Defl. {m) Max. Edge Defl • (m) Max. Edge Defl. {m} 

l 0.226 unstable unstable 

2 0.033 0.226 unstable 

3 0.012 0.070 0.236 

4 0.005 0.033 0.094 

5 0.003 0.019 0.052 

6 0.002 0.012 0.032 

TABLE 5.6 
MAXIMUM EXPECTED EXCURSIONS 

30 meh {13.4 mls} 60 meh {26.8 m/s} 90 m~h (40.2 m/s) 

Mode 3.5 X 50 CJ (ft) 3.6 X 50 <J (ft) 3.5x50 a (ft) 
ct ct ct 

l 2.59 (0.79m) unstable unstable 
2 0.378 (0.12m) 2.59 (0.79m) unstable 
3 0. l 33 ( 0. 04m) 0.802 (0.·24m) 2.71 {0.83m) 
4 o.063 (0.02ml 0.375 (O. llm) 1.08 (0.33m) 
5 0.035 (O.Olm) 0.214 (0.07m) 0.595 (0.18m) 
6 0.021 (0.006m) 0.133 (0.04m) 0.371 (O. llm) 
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It will particularly be noted that, for the bridge parameters chosen, 

the system is unstable at three calculated conditions which affect the first 

and second modes. This reflects the fact that the critical (zero damping) 

value has been passed through and that flutter has occurred in the mode in 

question. It further is to be noted that buffeting response amplitude is 

particularly sensitive to the values of damping present. The choice of 

parameters used in the examples presented does not portray a long-span bridge 

that would in fact have acceptable modern standards of stability, the first 

mode becoming unstable at a wind velocity of less than 60 mph. 

The theory behind the present results differs in two points from that 

of Ref. [5.18] by Scanlan and Gade. In that reference, it is necessary to 

interprete the spectra Su and Sw as being expressed in the units (velo-

city)2/K where K is reduced frequency Bw In the present work, the 
2 0 

units of Su and Sw are (velocity /n where n is frequency in Hz. A 

second point of difference is that the spectral "background" terms are also 

included in the present work, whereas they were ignored in Ref. [5.18]. 

Special co1TTI1ents are in order on the factor F appearing in (5.25): 

For the second mode of the example calculated for 60 mph (26.8 m/s), the 

following, in proper order, are the numerical values contributing to this factor: 

= 1485.2 with 2 u* = 13.995. 
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From this sample calculation, the relative roles of the background 

versus the resonant contributions of turbulence are seen to be 20% in the 

C~ term (effects of horizontal gusts) and 8% in the cM2 term (effects 

of vertical gusts). On the other hand, the total vertical gust (second) 

term contributes 72.2% of the full gust effect. This is primarily due to 

the high value of the slope CM of the moment curve. This emphasizes the 

point that a moment coefficient trend with low slope is a desirable design 

attribute. 

5"4 Discussion and Conclusions Relative to Torsion 

Section V to this point has been concerned with bridge torsional 

buffeting results only, most particularly in the case where the potential 

for negative damping due to aerodynamic characteristics is present. 

The theory predicts that the buffeting amplitude, based on the impor

tant resonance effects and neglecting secondary background turbulence effects, 

should vary as 02•833 for any one mode. This fact appears to be reason

ably corroborated by Table 5.7 in which theoretically calculated 3.5 cr 

results for Mode 3 {the first that remains stable up to 90 mph (40.2 m/s) 

are presented for three wind speeds. Assuming that the curve should follow 

the u2•833 law exactly at 60 mph (26.8 m/s), results for 30 and 90 mph 

(13.4 and 40.2 m/s, respectively), can be calculated, based on the empirical 

formula 

d = 5.775 X 10-6 u2•833 * 
• 

These are also presented in the table, showing reasonable matches. 

* Units empirical to convert U (mph) to d (ft). Conversion to S.I. units 
given in Table 5.7. 
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U mph 

TABLE 5.7 

MAXIMUM BUFFETING DISPLACEMENTS - TORSION 
(Mode 3) 

maximum maximum displacement displacement 
02.833law from examele bi: curve fit to 

30 (13.4 m/s) 0.133 (0.041 m) 0. 113 ( 0. 034 m) 

60 (2608 m/s) 0.802 (0.244 m) 0.802 (0.245 m) 

90 (40.2 m/s) 2. 71 (0.826 m) 2.53 (0.771 m) 

Some experimental encouragement for the theory is obtained by 

. . th . . 1 1 1 t. b d -u2 • 833 l comparing, 1n e same way, an emp1r1ca ca cu a 10n, ase on a aw, 

with experimental buffeting results due to Melbourne [5. 13] on a model of the 

West Gate bridge. These are given in Table 5.8, with the empirical and experi

mental results assumed to coincide at UR= 3. [Law used: 

d = 7.92 x 10-4 0R2•833J. 

TABLE 5.8 

u2•833 LAW~ VERSUS SOME RESULTS OF MELBOURNE 

Reduced Velocity UR 

l 

2 

3 

3.3 

Maximum Vertical Displacement 
d Melbourne 

0.001 - {0.0003 m) 

0.006 - (0.002 m) 

0.018 - (0.005 m) 

0.023 - (0.007 m} 

d by u~· 833 law 

0.001 
0.006 
0.018 

0.023 

It should be emphasized that Table 5.7 merely suggests the credibility 

of the □2 • 833 dependence and does not necessarily support other aspects of 

the theory provided herein. 
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By empirical curve-fitting to his experimental results, Melbourne 

[5.13] found that buffeting amplitude was reasonably matched by a law with 

o2· 5 and s-0-2• He did not provide in his empirical expression for the 

explicit effect of aerodynamic damping as a modifying effect on , , but did 

remark that a ,-o. 5 · law (as here) would be expected if no aerodynamic 

modifying influence were present. The present theory offers an explanation 

by replacing s by y (cf. eqn. 5.7). 

5o5 Theory for Bending 

Let h(x,t) be vertical deck deflection at its e.g •• At a 

spanwise position x, the equation of motion of the section will be 

(5.28) 

where ~h = mechanical damping in bending 

wh = natural circular frequency in bending 

p = air density 

0 = mean wind velocity normal to the span 

B = deck width 

K = BW'O = "reduced frequency" of vertical motion 

* Hi (i=l,2,3) = bridge deck self-excited aerodynamic coefficient 

(all * H. are functions of 0/NB = 2~/K) 
l 

h = vertical deflection of c.go of deck section 

Lh(x,t) = aerodynamic buffeting lift per unit span at x. 
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Let the mode s be a single independent bending mode; then 

(5.29) 

where ~s(t) is the associated generalized coordinate. Eq. (5.28) then 

yields 

(5.30) 

* * where self-excited terms in H2 and H2 have been dropped on the basis of 

their relatively small contribution and 

L 

( 5. 31 ) Ms = I M h~(x) dx 
0 

L 

(5.32) JS = I h2 ( ) dx 
s X -L 

0 

L 

(5.33) [h,s(t) = I Ln(x,t) hs(x) dx 
0 

Defining a net damping ratio y
5 

as 

(5.34) Ys = i;;s 

leads to 
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(5.35) 

The expression for the aerodynamic buffeting lift force per unit 

span Lh is given [ 5.3, 5.18, 5.20] by: 

(5.36) = - l 028[ + 2 C u(x,t) + (C' + ~ C ) w(x,t)J 
2P L - L B D -u u 

= 

where 

(5. 37) 

(5.38) 

and CL is the lift coefficient at a~ 0; 

C' 
L is its slope with respect to angle of attack a . 

' 

is the drag coefficient, lift and drag being based on 
reference to the deck width B; 

A is the projected frontal area of the deck per unit span. 

Using the same type of theory as exposed in relation to torsion, 

the cross-spectrum of lift between xA and x8 is found to be 

( 5. 39) 

Hence, following (5.29) and (5.35), the contribution of mode s to 

the power spectral density of h(x,t)/8 is given by 
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L L 

(5.40) Sh/B(x,n) = h;(x)JAs(n)J
2 

(~~:)
2 J f hs(xA)hs(x8)[C~usu(n) 

0 0 

where 

(5.41) 

Using the same integration approximations as noted under the discussion for 

torsion, and h/B (see eq. (5.29)) for dimensionless vertical displacement, 

results in: 

(5.42) 

or 

(5.43) 

where 

(5.44) 

2 
oh/B(x)"' 
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Noting that, for typical constant-section decks across the span Ms = 

MJ/, (5.43) becomes 

(5.45) 

5.6 Discussion of Factors Affecting the Variance in Bending 

Clearly, the general arguments about the parameters affecting 

torsion hold almost in their entirety for the bending case, with the 

following notes and modifications: 

l. 

2. 

3. 

4. 

5. 

6. 

2 2 hs(x) • Same remarks as for ar{x) • 

-1 
JS . 

2{C-l} 
c2 

• Same remarks as for Kr , where nr referred to 
torsional frequencies; ns now refers to bending 
frequencies. 

. 

-1 Same remarks as for Gr • 

Same remarks as for torsion, but C is defined for 

bending modes as C = 7nsl/U , so that 

2(C21) a: _Q_ 
C nl 

--2 2 2 
U « u* Jl.n z • 
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8. and 9. 

l 0. 

This plays a role analogous to Yr for torsion, 

* but the evolution of typical H1 curves vs U/nsB 

* is distinctly different from that of A2 curves. 

* H1 may reverse sign for some deck geometries as an 

indication of vortex-related instability. See for 

* example, Fig. 3.2, [5.18] showing H1 for a 

bridge with potential instability at different D/nB 

values in both bending and torsion. 

The major elements of difference between bending and 

torsional aerodynamic contributions lie in the aero

dynamic coefficients, CLu (lift) and Clw (combination 

of lift slope and drag effects). It may be concluded 

that low lift and low lift rate of change with twist, 

and low drag are all desirable aerodynamic character

istics for a deck section. As before 

where S is either Su or Sw • 

Background spectral terms. 

as earlier. 

Same comments 

From the above remarks, it becomes clear that the parameter 

dependence expressed by relation (5.27) for torsion, holds in the bending 
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case when the appropriate coefficients are substituted for CM
0

; and Js, 

Ys respectively, for Gr, yr. Thus, the comnents made for Tables 5.7 

and 5.8 hold as well for vertical bending deflections. (The deflections cited 

earlier from Melbourne [5.13] were in fact for vertical bending). 

5.7 Examples in Bending 

The examples chosen for bending will follow the same general scheme 

as for torsion. Six sinusoidal modes of increasing sinuousity from l to 6 

half-sine-waves, and with assumed natural frequencies of 0.1 Hz, 0.2 Hz, ••• , 

0.6 Hz , will be studied. The main span of a 4000 ft.(1220m) long bridge will 

again be the focus. Thus the data items for ns and JS ' as well as C ' 

f ' Su and SW' will be the same (cf. Tables 5.2 - 5. 4). However, Ys 
* will depend on the curve used to represent the coefficient Hl • For this, 

see Fig. 3.2 • The mass of the deck per unit span will be taken as M = 711.8 lb. 

ft.- 2 sec2 (3481 kg sec 2;m2) and A/B=0.13; 8=100 ft. (30.5m). Also, 

CL= 0, CL= 2.00, CD= 0.4. 

= = = 

* = 0.01 - 0.0167 H1 

u 
0.4 nB 

s 
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TABLE 5.9 

BENDING MODE DATA 

0=30 mph ( l}.4 m/s) 0=60 mph (26.8 m/s) 0 = 9 0 ( 40. 2 m/ s ) 
-D D * LI * * 

n5 B Hl Ys n5B Hl 'Ys n5B Hl Ys. 

Mode 

l 4.40 -1.760 0.0394 8.80 -3.520 0.0688 13.20 -5. 280 0.0982 

2 2.20 -0.880 0.0247 4.40 -1. 760 0.0394 6.60 -2.640 0.0541 

3 1.47 -0.588 0.0198 2.93 -1.172 0.0296 4.40 -1. 760 0.0394 

4 1.10 -0.440 0.0174 2.20 -0.880 0.0247 3.30 -1. 320 0.0320 

5 0.88 -0.352 0.0159 1. 76 -0.704 0.0218 2.64 -1.056 0.0276 

6 o. 73 -0.292 0.0149 1.47 -0.588 0.0198 2.20 -0.880 0.0247 

TABLE 5.10 

* DATA FOR u = 30 mph= 44 ft/sec; u* =l.87 ft/sec 

2 max. expected 
Mode crh/B 0 h/B l 00 crh/B excursion (ft) 

3.5 X 100 O"h/B 

l 3.14 X 10-7 5.60 X 10-4 0.0560 0.196 (0.060 m) 

2 l.18xl0 -8 1 .09 X 10-4 J.0109 0.038 (0.012 m) 

3 1.56 X 10 -9 3.95 X 10-S 0.0040 0.014 (0.004 m) 

4 3.58 X 10-lQ 1.89 X 10-S 0.0019 0.007 (0.002 m) 

5 1.11 X lQ•lO 1.05 X 10 -5 0.0011 0.004 (0.001 m) 

6 4.41 X 10-ll 6.64 X 10-G 0.0007 0.002 (0.0006 m) 

* 13.4 m/s 

98 



TABLE 5.11 

DATA FOR G = 60 mph*= 88 ft/sec; u* = 3.741 ft/sec 

Mode 2 
100 ah/B 3.5 x 100 ah/B 0 h/B 0 h/B 

1 6.40 X 10-fi 2.53 X 10 -3 0.253 0.805 (0.270 m) 

2 3.14.x 10 -7 5.60 X 10 -4 0.056 0.196 (0.060 m) 

3 4.74 X 10-B 2.18xl0-4 0.022 0.076 (0.023 m) 

4 1.18 X 10 
-8 1.09 X 10-4 0.011 0.038 (0.012 m) 

5 3.91 X 10 -9 6.25 X 10 -5 0.006 0.022 (0.007 m) 

6 1.56 X 10 -9 3.95 X 10 -5 0.004 0.014 (0.004 m) 

* 26.8 m/sec 

TABLE 5.12 

DATA FOR 0 = 90 mph*= 132 ft/sec; u* = 5.611 ft/sec 

2 
Mode 0 h/B 0 h/B 100 ah/B 3.5 x 100 oh/B 

l 3.39 X 10-5 5.82 X 10-3 0.582 2.04 

2 l.85 X 10-6 1.36 X 10-J 0.136 0.476 

3 3.14xl0-7 5.61 X 10 -4 0.056 0.196 

4 8.30 X 10-8 2.88 X 10-4 0.029 0. 101 

5 2.80 X 10 -8 1.68 X 10-4 0.017 0.059 

6 1.18 X 10 
-8 1.09 X 10-4 0.011 0.038 

* 40.2 m/sec 

99 



REFERENCES FOR SECTION V 

[5.1] Davenport, A.G.: 11 The Application of Statistical Concepts to the Wind 
Loading of Structures, 11 Proc. Instn. Civil Engrs., London, U.K., 
Volume 19, 1961, pp. 449-472. 

[5.2] Davenport, A.G.: "The Response of Slender, Line-Like Structures to a 
Gusty Wind, 11 Proc. Instn. Civil Engrs., London, U.K., Vol. 23, 1962, 
pp. 389-407. 

[5.3] Davenport, A.G.: "Buffeting of a Suspension Bridge by Storm Winds," 
Jnl. Struct. Div •• ASCE, June 1962, pp. 233-264. 

[5.4] Davenport, A.G.: "The Action of Wind on Suspension Bridges," Proc. 
Int'l. Symposium on Suspension Bridges, Lab. Nae. de Engenharia Civil, 
Lisbon, Portugal, 1966, pp. 79-100. 

[5.5] Davenport, A.G. et al: "A Study of Wind Action on a Suspension Bridge 
During Erection and on Completion," Rept. BLWT-3-69, Boundary Layer · 
Wind Tunnel Lab., Univ. of Western Ontario, London, Canada, May 1969. 
Also: Appendix to same, BLWT-4-70, March 1970. 

(5.6] Grillaud, G.: "Les Methodes d'Etude Aerodynamique sur les pants 
Suspendus ou ~ Haubans," Report No. EN ADYM 79-6-R, 1979, Centre 
Scientifique et Technique du B~timent, Nantes, France 1979. 

[5.7] Holmes, J.D.: "Monte Carlo Simulation of the Wind-Induced Response of 
a Cable-Stayed Bridge," Wind Engrg. Rept. 2/78, Dept. Civ. Engrg., 
James Cook Univ., No. Queensland, Australia, June 1978. 

(5.8] Irwin, H.P.A.H. and Schuyler, G.D.: "Experiments on a Full Aeroelastic 
Model of Lions' Gate Bridge in Smooth and Turbulent Flow, 11 Lab. Tech. 
Rept. LTR-LA-206, National Research Council, Ottawa, Canada, 18 Oct. 
1977. 

[5.9] Irwin, H.P.A.H.: 11 Wind Tunnel and Analytical Investigations of the 
Response of Lions' Gate Bridge to a Turbulent Wind," Lab. Tech •. Rept. 
LTR-LA-210, National Research Council, Can~da, June 1977. 

[5.10] Irwin, H.P.A.H., and Schuyler, G.D.: "Wind Effects on a Full Aero
elastic Bridge Model," Preprint No. 3268, ASCE Spring Convention, 
Pittsburgh, Pa., April 1978. 

[5.11] Irwin, H.P.A.H.: "Further Investigations of a Full Aeroelastic Model 
of Lions' Gate Bridge," Lab. Tech. Rept. LTR-LA-221, National Research 
Council, Ottawa, Canada, May 1978. 

[5.12] Konishi, I., Shiraishi, N., and Matsumoto, M.: "Aerodynamic Response 
Characteristics of Bridge Structures," Proc. 4th Int'l. Conf. on Wind 
Effects on Bldgs. and Structures, London, U.K., Sept. 1975, pp. 199-208. 

l 00 



[5.13] Melbourne, W.H.: "Model and Full Scale Response to Wind Action 
of the Cable-Stayed Box Girder \-lest Gate Bridge," Proc., Symposium 
on Practical Ex eriences with Flow-Induced Vibrations, W. Germany, 
Sept. 1979 in press. 

[5.14] Miyata, T., Kubo, Y. and Ito, M.: "Analysis of Aeroelastic Oscilla
tions of Long-Span Structures by Nonlinear Multi-dimensional 
Procedures," Proc. 4th Int'l. Conf. on Wind Effects on Bldgs. and 
Structures, London, U.K., Sept. 1975, pp. 215-225. 

[5.15] Miyata, T. and Tanaka, H.: "Aerodynamics of Long-Span Structures," 
Wind Effects on Structures, Univ. of Tokyo Press, Tokyo, Japan, 
1976, pp. 245-256. 

[5.16] Okauchi, et. al: "The Wind-Resistant Experimental Bridge for the 
Honshu-Shikoku Island Bridge Link" (in Japanese), Res. Rept., 
Comm. of the Honshu-Shikoku Island Bridge Link Authority, 1976. 

[5.17] Scanlan, R.H.: "Recent Methods in the Application of Test Results to 
the Wind Design of Long, Suspended-Span Bridges," Rept. No. FHWA
RD-75-115, Federal Highway Admin., Office of R & D, U.S. D.O.T., 
Washington, DC 1975. 

[5.18] Scanlan, R.H. and Gade, R.H.: "Motion of Suspended Bridge Spans 
Under Gusty Wind," Jnl. Struct. Div. ASCE, Vol. 103, No. ST9, 
Sept. 1977, pp. 1867-1883. 

[5.19] Scanlan, R.H.: "The Action of Flexible Bridges under Wind, I: Flutter 
Theory; II: Buffeting Theory," Jnl. Sound and Vibration, Vol. 60, 
No. 2, 1978, pp. 187-199 and pp. 201-211. 

[5.20] Shinozuka, M., Imai, H., Enami, Y., and Takemura, K.: "Identification 
of Aerodynamic Characteristics of a Suspension Bridge Based on Field 
Data," Stochastic Problems in Dynamics (B.L. Clarkson, Ed.) Pitman, 
San Francisco and London, 1977, pp. 214-236. 

[5.21] Simiu, E. and Scanlan, R.H.: Wind Effects on Structures, Wiley, New 
York, 1978. 

[5.22] Wardlaw, R.L.: "Sectional Versus Full Model Wind Tunnel Testing of 
Bridge Road Decks," DME/NAE Quarterly Bulletin, 1978 (4), pp. 25-47. 

l 01 



VI. CONCLUSIONS 

As can be judged from the topics covered: flutter, vortex-shedding, 

and buffeting, the aim of this report is comprehensive: to include state-of

the-art methods, with examples, that permit the designer to make reasonable 

estimates of the wind-induced dynamic responses of a long-span bridge. 

Sections I and II have offered an introduction with special refer

ence to the pertinent literature of the last decade. 

Section III, in reviewing the flutter problem, emphasizes the key 

parameters that enter into this phenomenon, and points out particularly those 

that depend upon wind tunnel testing. Also, the two basic kinds of flutter: 

single-degree torsional ("separated-flow") type and two-degree, coupled 

("classical") flutter are identified and described in detail. The examples 

calculated are for representative bridge parameters. It should be noted that 

the aerodynamic parameters shown graphically in Figures 3.2 and 3.3, while 

obtained for very typical bridge deck forms, are not, in the strict sense, 

extrapolable to new forms of deck section. They are, rather, intended to 

serve as examples only and do not obviate the need of testing new bridge deck 

forms to obtain analogous data. 

Section IV constitutes a new attempt to fit a simple theoretical 

model to the observed wind tunnel effects of vortex shedding, and to extrapo

late full-bridge behavior from the observed physical action of a bridge-deck 

section model. The limited aim is to project reasonable estimates of worst

case full-bridge response under coherent vortex shedding. Much remains to be 

done on the vortex-induced response of bluff bodies in general, under both 

laminar and turbulent incident flow. Section IV constitutes one small step 

along this road, which is an open avenue for needed research. 
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Section V, on bridge buffeting, returns to a topic treated by a 

number of authors since 1960. In particular, the viewpoint of Gade and 

Scanlan (1977) is adopted. This point of view incorporates the important 

information already stored in the bridge flutter derivatives of Figures 3.2 

and 3.3. In particular, it includes the case where single-degree torsional 

flutter instability may be present and may strongly affect buffeting response 

by bringing damping toward zero. Again, the examples included, worked out 

for representative bridge parameters, are indended as prototypical calcula

tions that may be followed out in new applications. 

The report as a whole is an attempt to present a unified, analytical

experimental aid to engineers concerned with the forecasting of the dynamic 

responses of long-span bridges to wind. Emphasis is placed upon projections 

that can be made from section model data only, such models being viewed as 

both economical and accurate sources of basic aerodynamic data. 
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